Solving Differential Equations in R – Chapter 4
## =============================================================================
## Schematic representation of the pendulum problem
## Figure 5.1 from Soetaert, Cash and Mazzia,
## Solving differential equations in R
## implemented by Karline Soetaert
## =============================================================================
require(shape)
par (mar = c(1, 1, 1, 1))
emptyplot()
mid <- c(0.5, 0.9)
r <- 0.8
dpi <- 0.18
GE <- getellipse (mid = mid, from = (3/2-dpi)*pi, to = (3/2 + dpi)*pi,
rx = r, ry = r)
plotcircle(mid = mid, from = (3/2-dpi)*pi, to = (3/2 + dpi)*pi,
lty = 1, lcol = "darkgrey", r = r)
segments(mid[1], mid[2], mid[1], mid[2] - r, lty = 2)
nr <- nrow(GE) * 0.8
bob <- GE[nr, ]
segments(mid[1], mid[2], bob[1], bob[2], lty = 1, lwd = 2)
plotcircle(mid = mid, from = 3/2*pi, to = (3/2 + dpi*0.5)*pi,
lty = 1, lcol = "darkgrey", r = r, arrow = TRUE,
arr.adj = 1, arr.type = "triangle", arr.length = 0.3)
filledellipse( mid = bob, col = greycol(100), rx1 = 0.035)
filledellipse( mid = mid - c(0, r), col = greycol(100, interval = c(0, 0.4)),
rx1 = 0.035)
filledellipse( mid = mid, col = "black", rx1 = 0.01)
xa <- 0.75
ya <- 0.7
dd <- 0.15
Arrows(xa, ya, xa, ya+dd, arr.type = "triangle", arr.length = 0.2)
Arrows(xa, ya, xa+dd, ya, arr.type = "triangle", arr.length = 0.2)
text(xa + dd/2, ya - dd/4, "x")
text(xa - dd/4, ya + dd/2, "y")
text(0.68, 0.45, "length L", adj = 0)
text(bob[1] + dd/3, bob[2], "m = 2", adj = 0)
Go back